ORIGINAL PAPER

J. Yao · K. Konstantinov · G. X. Wang · H. K. Liu

Electrochemical and magnetic characterization of LiFePO₄ and $Li_{0.95}Mg_{0.05}FePO_4$ cathode materials

Received: 28 September 2005 / Revised: 9 November 2005 / Accepted: 11 November 2005 / Published online: 13 December 2005 © Springer-Verlag 2005

Abstract A series of lithium iron phosphates was synthesized via the sol–gel route. Iron phosphides, which are electronic conductors, were formed when sintered at 850°C. Magnetic susceptibility measurements on the samples show antiferromagnetic behaviour with $T_N=50\pm2$ K for LiFePO₄ and Li_{0.95}Mg_{0.05}PO₄ sintered at temperatures below 850°C. The LiFePO₄ and Li_{0.95}Mg_{0.05}FePO4 cathodes show a stable electrochemical capacity in the range of 150–160 mA h/g on cycling. The cyclability deteriorates with increasing sample sintering temperature due to the increased crystal size and impurities.

Keywords Lithium iron phosphates · Magnetic susceptibility · Lithium-ion battery · Electrochemical property

Introduction

Lithium-ion batteries have become the dominant power sources for portable electronic devices because of their high energy density [1–4]. The current commercial lithium-ion batteries use $LiCoO_2$ as the cathode material, which limits the applications to small batteries due to the high cost and toxicity of Co. In the past decade, a number of new cathode materials such as layered structure of $LiMnO_2$ [5, 6], $LiMn_2O_4$ spinels [7, 8] and $LiM_xNi_{1-x}O_2$ compounds [9, 10] have been developed as alternative cathode materials for lithium-ion batteries. However, none of them are in real industrial applications so far.

A group of lithium transition metal "polyanion" compounds incorporating polyanions XO_4^{3-} (X=S, P, As, Mo) has been extensively investigated as new cathode

G. X. Wang (⊠) · H. K. Liu ARC Centre for Nanoelectromaterials, University of Wollongong, Wollongong, NSW 2522, Australia e-mail: gwang@uow.edu.au Fax: +61-2-42215731 materials for lithium-ion batteries [11-15]. Among them, LiFePO₄ olivines have attracted particular interest because of the low cost and environmental friendliness of iron. LiFePO₄ has a lithium intercalation/de-intercalation potential of 3.4–3.5 V vs Li/Li^+ due to the tuning effect of the large polyanion [PO₄]³⁺. LiFePO₄ is an ideal cathode material for large-scale lithium-ion batteries for electric vehicles (EVs) and stationary power storage. LiFePO₄ has an ordered olivine structure (space group *Pnma*), in which Li, Fe and P atoms occupy octahedral 4a, octahedral 4c and tetrahedral 4c sites, respectively. The oxygen atoms are arranged in a slightly distorted, hexagonal close-packed arrangement. The FeO₆ octahedra share common corners in the bc plane, and the LiO₆ octahedra form an edge-sharing chain in the *b*-direction. The separation of the FeO_6 octahedra by PO₄ polyanions significantly reduces the electrical conductivity of the material. This causes poor rate capacity and low utilization of Li in the LiFePO₄ host structure. Extensive investigations have been made to improve the performance of LiFePO₄, including carbon coating, addition of conductive copper/silver powders, dispersion of high-surface-area carbon black, supervalence cation doping and synthesis of nanosize grains [16-23].

The formation of nano-network electronic conduction in LiFePO_4 and LiNiPO_4 olivines by creating conductive iron phosphides has been reported as one efficient approach to improve the electronic conductivity [24]. However, the electrochemical performance of these olivines has not been described. Here, we show the electrochemical and magnetic properties of LiFePO_4 and doped $\text{Li}_{0.95}\text{Mg}_{0.05}\text{FePO}_4$ compounds.

Materials and methods

Materials synthesis

LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ were prepared by a solgel preparation route. Li(OH)·H₂O (99.9%, Aldrich), FeC₂O₄·2H₂O (99%, Aldrich), NH₄·H₂PO₄ (97%, Aldrich) and Mg(C₂H₃O₂)₂ (99%, Aldrich) were used as reactants. The stoichiometric reactants were dissolved in deionized water, to which polyacrylic acid and citric acid were added

J. Yao · K. Konstantinov · G. X. Wang · H. K. Liu Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

as complexing agents for the formation of the gel. The solutions were heated and maintained at 85° C under vigorous stirring until a viscous gel was formed. The as-formed gel was heated to 500°C to decompose the organics under flowing argon gas. The decomposed precursors were further sintered at 700, 800 and 850°C, respectively, under a flowing gas mixture (10% H₂ in Ar). A slightly reducing atmosphere was employed during the sintering process to prevent the oxidation of Fe²⁺ cations. Six samples were prepared, which are listed in Table 1.

X-ray analysis and scanning electron microscopy observation

X-ray diffraction (XRD) was performed on the prepared lithium iron phosphates to determine the phase purity using Cu K α radiation (MO3xHF22, MacScience, Japan). The morphology of lithium iron phosphate powders was studied using a scanning electron microscope (SEM; JEOL JEM-3000).

Magnetic measurements

The magnetic properties of LiFePO₄ and $Li_{0.95}Mg_{0.05}PO_4$ samples sintered at 700 and 850°C were studied using a Quantum Design MPMS XL SQUID magnetometer. The dc susceptibility was measured in a magnetic field of 5,000 Oe from 5 to 300 K.

Electrochemical testing

Electrochemical characterization was performed by assembling CR2032 coin cells for galvanostatic charge/discharge. The electrodes were made by dispersing 80 wt% active material, 10 wt% carbon black and 10 wt% polyvinylidene fluoride (PVDF) in *n*-methyl pyrrolidone (NMP) to form a slurry. The slurry was then coated onto an Al foil. The coated electrodes were dried in a vacuum oven and then pressed at 1,200 kg/cm². The thickness of electrodes is about 70–80 μ m. The mass of active materials in each electrode is in the range of 1.5–2.0 mg. The coin cells were assembled in an argon-filled glove box (Mbraun, Unilab, Germany) with lithium foil as the counter electrode. The electrolyte was 1 M LiPF₆ in a 1:1 mixture

of ethylene carbonate (EC) and dimethyl carbonate (DMC).

Results and discussion

XRD and SEM analyses

XRD was performed on LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ powders. Fig. 1 shows the XRD patterns of LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ samples sintered at different temperatures. Phase-pure LiFePO4 and Li0.95Mg0.05FePO4 were obtained after sintering at 700 and 800°C. The diffraction lines are indexed to an orthorhombic crystal structure (triphylite, space group *Pnma*). For LiFePO₄ sintered at 850°C, the main phase is still triphylite LiFePO₄, but there are substantial impurity phases such as FeP₄ and Fe₂P, as indicated in Fig. 1a. However, for Li_{0.95}Mg_{0.05}FePO₄ sintered at 850°C, the main phase is not triphylite. There are numerous impurity phases that cannot be totally identified. The strongest diffraction peak was identified as Fe₂P. XRD analysis confirmed the previous report [24] that iron phosphides are formed in LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ compounds when sintered at high temperature. We noted that the Mg-doped sample sintered at 850°C has more impurities than that of the undoped one. This result is similar to the previous report [25] in which it was found that doped samples always contain more impurities and impurity phases were found enriched in the dopant. The mechanism for this phenomenon is unclear yet. Thermogravimetric analysis was performed on LiFePO4 and Li_{0.95}Mg_{0.05}FePO₄ samples. All samples contain 2–3 wt% carbon, which was induced by the sol-gel synthesis process.

Fig. 2a–c shows SEM images of $Li_{0.95}Mg_{0.05}PO_4$ powders sintered at 700, 800 and 850°C, respectively. The sample sintered at 700°C has a small grain size of about 0.5–1 µm. When sintered at 800°C, the grain size increased to 3–5 µm, while the 850°C sintered sample exhibited the biggest grain size of 5–10 µm. The crystal size of lithium iron phosphates was significantly influenced by the sintering temperature. Fig. 3 shows the energydispersive spectrometry (EDS) elemental mapping of $Li_{0.95}Mg_{0.05}PO_4$ powders. Fig. 3a is the secondary electron image. A very uniform element distribution was observed for main elements Fe, P, and O. Due to resolution reason, the distributions of trace dopant Mg and carbon are not shown. The trace dopant Mg²⁺ ions are also observed

numum non phosphates	
LiFePO ₄ 700 LFP-700 NA 0.6	
LiFePO ₄ 800 LFP-800 NA 4.0	
LiFePO ₄ 850 LFP-850 FeP ₄ , Fe ₂ P 8.0	
Li _{0.95} Mg _{0.05} FePO ₄ 700 LFPMg-700 NA 0.8	
Li _{0.95} Mg _{0.05} FePO ₄ 800 LFPMg-800 NA 4.5	
<i>NA</i> Not applicable $Li_{0.95}Mg_{0.05}FePO_4$ 850 LFPMg-850 Fe ₂ P, FeP ₄ , Fe ₂ P ₂ O ₇ and others 10	

Fig. 1 X-ray diffraction patterns of a LiFePO₄ and b $Li_{0.95}Mg_{0.05}FePO_4$

homogeneously distributed in the crystal structures. This should be attributed to the chemical synthesis process. The ingredient Li^+ , Fe^{2+} , Mg^{2+} and PO_4^{3-} ions were dissolved in water and mixed on the atomic scale in solution. Following the subsequent gel formation and sintering, a uniform element distribution in the as-prepared materials is expected. The phase compositions and average crystal size of all samples are summarized in Table 1. In general, Mg-doped samples show larger crystal size than that of undoped ones. This could be due to the promotion of crystal growth by MgO because MgO is a common assistant sintering material. We performed Rietveld refinement on XRD data for all samples to obtain lattice parameters. We found that LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ have

the same lattice parameters within the same series, regardless of sintering temperature. LiFePO₄ olivine has the lattice parameters a=10.35559(7) Å, b=6.00463(4) Å and c=4.68908 (3) Å, while the Mg-doped Li_{0.95}Mg_{0.05}FePO₄ olivine phase has slightly small lattice parameters, a=10.3146 (1) Å, b=6.00122 (5) Å and c=4.66574 (8) Å. The unit cell of the olivine lattice was slightly shrunk along all *x*-, *y*- and *z*-directions due to the doping effect. This is in agreement with the fact that Mg²⁺ ion (r=0.66 Å) has smaller radius than that of Fe²⁺ ion (r=0.74 Å) in octahedral coordination. The variation of lattice parameters further confirms the incorporation of Mg²⁺ ions in olivine crystal structure.

Fig. 2 Scanning electron microscopy (SEM) images of Li_{0.95}Mg_{0.05}FePO₄ samples sintered at a 700°C, b 800°C and c 850°C

Magnetic properties of $LiFePO_4$ and $Li_{0.95}Mg_{0.05}FePO_4$

The temperature dependencies of the molar magnetic susceptibilities of LiFePO₄ samples sintered at 700 and 850° C are shown in Fig. 4a,b respectively. The reciprocal susceptibilities are shown in the inset. The magnetic

susceptibility of LiFePO₄ shows a maximum at 50±2 K, demonstrating a paramagnetic–antiferromagnetic phase transition with a Curie–Weiss behaviour above the Néel temperature (θ_N). The two samples show similar dependencies of the magnetic susceptibilities on temperature, but the sample sintered at 850°C shows lower molar susceptibility. As detected by XRD analysis, a small amount of

Fig. 3 Energy-dispersive spectrometry (EDS) elemental mapping by SEM

181

iron phosphides in LiFePO₄ was formed when sintered at 850°C, but this has no significant influence on the antiferromagnetic behaviour. Fig. 5a,b shows the molar magnetic susceptibilities of Li_{0.95}Mg_{0.05}FePO₄ powders sintered at 700 and 850°C, respectively. The Li_{0.95}Mg_{0.05} FePO₄ sample sintered at 700°C shows the same magnetic behaviour as LiFePO₄, with a typical antiferromagnetism below the Néel temperature. However, the $Li_{0.95}Mg_{0.05}$ FePO₄ sample sintered at 850°C shows ferromagnetic behaviour, which is totally different from its counterpart sintered at 700°C. The main phases for Li_{0.95}Mg_{0.05}FePO₄ sintered at 850°C are iron phosphides. Most of these phosphides (Fe₂P, Fe₃P, FeP₄ and Fe₇₅P₁₅C₄) are ferromagnetic [26]. Therefore, the measured ferromagnetic behaviour also confirmed the formation of substantial ferromagnetic iron phosphides when sintered at high temperature (850°C).

The effective magnetic moment was obtained using the paramagnetic formula $\mu = (8\chi T)^{-1/2}$ [27] by using measured magnetic susceptibility, which is shown in Fig. 6. The

measured μ values for the three antiferromagnetic samples are in the range of 4.6–4.9 μ_B at room temperature. The Curie temperature θ_C was obtained by linear fitting the reciprocal magnetic susceptibility above the Néel temperature. Table 2 shows the magnetic parameters of the four samples. All three antiferromagnetic samples have the same Néel temperature. The Mg-doped sample sintered at 700°C shows a different Curie temperature of $\theta_C = -76$ K. The ferromagnetic sample has a positive θ_C value of 110.5 K.

In the triphylite structure of LiFePO₄, Fe²⁺ ions occupy octahedral 4c sites with coordinates x=0.28, y=0.25 and z=0.96. Due to the influence of the octahedral crystal field, the five 3d orbitals of the Fe²⁺ ion split into three t_{2g} and two e_g configurations. There are six electrons in 3d orbitals for the Fe²⁺ ion. Among them, four electrons are on the three t_{2g} orbitals (d_{xy} , d_{xz} and d_{yz}), in which three electrons spin up and the fourth electron spins down. The magnetic moments for the paired two electrons in one of the t_{2g} orbitals cancel each other. Therefore, there is a net of two

Fig. 6 The effective magnetic moment per mole of iron of LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ samples

Li_{0.95}Mg_{0.05}FePO₄ samples

Fig. 7 Charge/discharge curves in the first cycle for a LiFePO₄ and b $Li_{0.95}Mg_{0.05}FePO_4$ sample electrodes. Current rate: *C*/8

Sample	Magnetic properties			
	Néel temperature, $T_{\rm N}$ (K)	Curie temperature, $\theta_{\rm C}$ (K)	Effective magnetic moment, μ (μ _B) at 25°C	
LiFePO ₄ , 700°C sintered	50±2	-96.2	4.77	
LiFePO ₄ , 850°C sintered	50±2	-96.2	4.55	
Li _{0.95} Mg _{0.05} FePO ₄ , 700°C sintered	50±2	-76.0	4.57	
$Li_{0.95}Mg_{0.05}FePO_4$, 850°C sintered	_	+110.5		

spin-up electrons in t_{2g} orbitals. Two electrons occupy two e_g orbitals (d_{x2-y2} and d_z^2), in which one electron is in each orbital with spin-up configuration. The Fe²⁺ ion presents a net of four spin-up electrons (high spin). Therefore, the theoretical value of magnetic moment μ for Fe²⁺ in LiFe PO₄ would be 4.90 μ_B based on the formula $\mu=g[S(S+1)]^{1/2}$, where g=2.0023 and S=2. Our experimental value agrees

quite good with the theoretical value. Following the super and super–super exchange rule, the interactions between Fe– O–Fe induce antiferromagnetism, as exhibited by the magnetic measurement. However, in the orthorhombic phase, there is no Fe–O–Fe bonding, only Fe–O–P–O–Fe bonding. Thus, the magnetic interaction in LiFePO₄ could be long range through Fe–O–P–O–Fe triple exchange [28–30].

184

Electrochemical performance of $LiFePO_4$ and $Li_{0.95}Mg_{0.05}FePO_4$ cathode materials

Electrochemical properties of LiFePO₄ and Li_{0.95}Mg_{0.05}PO₄ cathodes were characterized via constant current charge/ discharge testing at C/8 rate. Fig. 7a,b shows the voltage profiles in the first cycle for LFP-700 and LFPMg-700 sample electrodes. The cells were charged and discharged in the voltage range of 2.75-4.2 V vs Li/Li⁺. The profiles exhibit a flat charge and discharge plateau between 3.45 and 3.55 V, which matches the oxidation and reduction peaks in the C-V curves. LiFePO₄ electrode delivered a specific discharge capacity of 160 mA h/g in the first cycle, whereas Li_{0.95}Mg_{0.05}FePO₄ cathode shows a lower discharge capacity of 150 mA h/g in the first cycle, which is due to the partial substitution of Li^+ with non-active Mg^{2+} . The cyclabilities of all sample electrodes are shown in Fig. 8. In general, the as-prepared LiFePO₄ and $Li_{0.95}$ $Mg_{0.05}FePO_4$ cathode materials sintered at different temperatures demonstrated a stable capacity in the range of 150-160 mA h/g at the C/8 rate. The capacity degradation with cycling for LiFePO₄ and Li_{0.95}Mg_{0.05} FePO₄ sample electrodes increases with increasing sintering temperature, which is due to the influence of the increased crystal size. The previously proposed "radial model" and "mosaic model" for LiFePO₄ can exactly explain the observed phenomena [31, 32]. The process of lithium insertion and extraction on LiFePO₄ is a two-phase coexisting process. Therefore, the crystal size has a critical influence on the transport of lithium ions and electrons into and out of the individual crystal. The larger the crystal size, the greater the inefficiency of the full conversion of LiFePO₄ to FePO₄ and back again, inducing a loss of capacity with cycling.

Conclusions

The sintering temperature has significant influences on the crystal size and impurities of LiFePO₄ and $Li_{0.95}Mg_{0.05}FePO_4$

compounds. Substantial iron phosphides can be formed when sintered at high temperatures. Typical antiferromagnetic behaviour was demonstrated for LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ samples with a Néel temperature (T_N) of 50±2 K. This antiferromagnetism could be induced by long-range Fe–O–P–O–Fe triple exchange. LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄ compounds are electrochemically active, with a specific capacity between 150 and 160 mA h/g.

Acknowledgements This work was supported by the Australian Research Council through the ARC Centre for Nanostructured Electromaterials and the ARC Linkage Project "Large-scale rechargeable lithium battery for power storage and electric vehicle applications" (Project ID: LP0453766). We thank our colleagues Dr. Alexey Pan for help with magnetic property measurement and Dr. X.L. Wang for analysis of magnetic data.

References

- 1. Tarascon JM, Armand M (2001) Nature 414:359
- 2. Walkihara M (2001) Mater Sci Eng R 33:109
- 3. Tirado JL (2003) Mater Sci Eng R 40:103
- 4. Whittingham MS (2004) Chem Rev 104:4271
- 5. Armstrong AR, Bruce PG (1996) Nature 381:499
- Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson JB, Regan E, Steiner R, Pickering PJ (2000) J Electrochem Soc 147:4078
- 7. Thackeray MM (1995) J Electrochem Soc 142:2558
- Li GH, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178
- 9. Saadoune I, Delmas C (1996) J Mater Chem 6:193
- 10. Armstrong AR, Paterson AJ, Robertson AD, Bruce PG (2002) Chem Mater 14:710
- Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188
- Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) J Electrochem Soc 144:1609
- Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178
- 14. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525
- Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93

- 16. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid State Lett 4:A170
- 17. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224
- 18. Croce F, D'Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid State Lett 5:A47
- 19. Franger S, Cras FL, Bourbon C, Rouault H (2002) Electrochem Solid State Lett 5:A231
- 20. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid State Lett 6:A53
- 21. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid State Lett 7:A503
- 22. Franger S, Bourbon C, Cras FL (2004) J Electrochem Soc 151: A1024
- 23. Mi CH, Zhao XB, Cao GS, Tu JP (2005) J Electrochem Soc 152:A483

- 24. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147
- 25. Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 1:123 26. Berry BS, Pritchet WC (1978) Solid State Commun 26:827
- 27. Song YN, Zavalij PY, Chernova NA, Whittingham MS (2005) Chem Mater 17:1139
- 28. Santoro RP, Newnham RE (1967) Acta Crystallogr 22:344
- 29. Song YN, Zavalij PY, Suzuki M, Whittingham MS (2002) Inorg Chem 41:5778
- 30. Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Chem Mater 15:4082
- 31. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Solid State Ionics 130:41
- 32. Andersson AS, Thomas JO (2001) J Power Sources 97-98:498